Parrila Antidifusora, Receptor de Imagen y Exposimetría automática – Mamografía

Parrilla Antidifusora

No es una exageración afirmar que la introducción de la parrilla antidifusora ha supuesto una
revolución en la técnica mamográfica. El incremento de la dosis que se requiera por el empleo de una
parrilla por el uso de los filtros «k edge» (paladio y rodio) junto con las combinaciones rápidas pantallapelícula reducen la dosis a valores aceptables. La eliminación de la radiación dispersa con el uso de
parrillas ha hecho posible la identificación de lesiones de pequeño tamaño y ha facilitado
enormemente la detección de signos diagnósticos de cáncer precoz. Se ha descrito que comparado
con los screnning previos, ha habido un aumento en la tasa de detección de cáncer de un tercio desde
la introducción de la parrilla antidifusora. Este aumento ha sido fundamentalmente para los cánceres
de 6-10 mm; estos pequeños cánceres se diagnosticaron sobre la base de pequeñas masas
estrelladas o alteraciones de la estructura del tejido mamario.

La parrilla no se emplea en la magnificación (Fig.8.6); el volumen de aire interpuesto al alejar
la mama de la película radiográfica es suficiente para eliminar la mayor parte de la radiación dispersa
(efecto «gap» o «vacío»).

Receptor de imagen.

Presentación de PowerPoint

Aunque cada vez es más frecuente la mamografía digital, en nuestro entorno corresponde
prácticamente en su totalidad a la unidad película-hoja de refuerzo. Se trata de películas especiales
para mamografía, generalmente de una sola capa de emulsión, si bien en el mercado hay películas de
doble capa de emulsión que reducen la dosis de radiación prácticamente a la mitad, pero provocan
una ligera distorsión de la imagen y poseen menor resolución, sobretodo en las microcalcificaciones
mamarias. A pesar de todo serían , en principio, las películas ideales para conseguir con la menor
dosis posible la imagen de mayor calidad.
7
Los chasis para mamografía deben ser sólidos pero material de escasa absorción y la fibra de
carbono parece cumplir igualmente estos requisitos. Además, los espesores de los chasis deben ser
uniformes no sólo entre sí, sino también unos con otros, para evitar que la exposimetría automática dé
lugar a diferencias de exposición para mamas de similar composición y espesor, originando entonces
mamografías sobre o subexpuestas.

Exposimetría automática.

La exposimetría automática se utiliza en mamografía para ajustar automáticamente el tiempo
de exposición a un ennegrecimiento determinado, prescindiendo del espesor de la mama. Consiste en
un detector sensible a la radiación que, incorporado a un circuito, corta el disparo cuando se ha
alcanzado la saturación previamente seleccionada. La exposimetría automática se obtiene mediante
una cámara de ionización. Es imprescindible, hoy día, disponer del control automático pues es
imposible estimar por palpación la exposición requerida para obtener una imagen satisfactoria de la
mama. Algunas mamas densas no se aprecian muy firmes o granulares, mientras que mamas
percibidas a la palpación como tensas son relativamente radiotransparentes.
El exposímetro automático debe ser preciso para mantener las constantes de
ennegrecimiento que le corresponden, dentro de un rango, para que se puedan obtener radiografías
comparables de una mísma mama en dos momentos diferentes de la vida de una mujer.
Hay dos puntos de importancia práctica en la exposimetría automática: la posición que ocupa
la cámara de ionización durante la exploración, y las características de absorción de la radiación de las
estructuras ubicadas entre la película radiográfica y la cámara de exposimetría.

Si el exposímetro no está suficientemente cubierto por el tejido mamario, alcanzará antes su
saturación y cortará el disparo antes de que la película haya alcanzado el ennegrecimiento deseado.
Por eso la cámara suele tener la posibilidad de ocupar tres diferentes posiciones. La cámara debe
posicionarse debajo de la porción más densa de la mama. La compresión de la mama consigue
disminuir el espesor de ésta, pero es falso que la porción más densa se encuentre en la porción más
proximal de la pared torácica, pues esta zona suele estar compuesta fundamentalmente por grasa. Se
obtiene mejor resultado cuando la cámara de exposimetría automática se coloca entre 3 y 5 cm por
detrás del pezón. Esta es la zona que probablemente presenta la mayor densidad, sin importar
demasiado el grado de involución del tejido mamario.
La posición de la cámara debe ser fácilmente apreciada por el operador. En aquellas mujeres
cuya posición del pezón sea muy anterior y la cámara no pueda alcanzarla, es posible hacer una
mamografía de prueba o realizar un control manual de la exposición. En la proyección oblicua, puede
exponerse la cámara más cercana a la pared torácica, con la esperanza de que quede debajo del
pectoral mayor, maniobra que no sirve si se pretende estudiar la porción inferior de la mama.

densidades radiológicas con mamas de idénticos componentes pero de diferente espesor; pero
carecen de linealidad, de forma que el ennegrecimiento disminuye a medida que se incrementa el
espesor de la mama. También varía la sensibilidad del exposímetro con la variación del voltaje. No
obstante, los mamógrafos suelen llevar mecanismos accesorios para variar en más o en menos,
ligeramente , los grados de exposición, y los grados de ennegrecimiento.
Las cámaras de ionización suelen ser tan sensibles que, para una misma mama, puede variar
la exposición variando tan sólo la película, ya que las diversas películas del mercado poseen
diferentes absorciones. También es capaz de variar la exposición con una misma mama al cambiar la
marca del chasis, por lo que la cámara debe siempre fijarse para una película y chasis determinados.
La exposimetría automática puede reducir el tiempo que dure una exploración, porque se
obtendrán así la mayor parte de las mamografías sin necesidad de repetir la exploración. Pero resulta
imprescindible para las mamografías de screening, en algunas de cuyas campañas no se procesan
las mamografías hasta horas después de haberse marchado la mujer de la Sala de mamografía.

Generador – Miliamperaje – Tubo de Rayos X – Mamografía

BASES DE LA MAMOGRAFIA

Al igual que en otros aparatos modernos de rayos X, el mamógrafo debe rectificar la corriente
alterna de uso generalizado en corriente contínua. Existen diferentes procedimientos para ello, desde
la forma más sencilla de la autorectificación de los aparatos dentales hasta los convertidores de alta
frecuencia; con éstos últimos se consigue prácticamente una corriente contínua y constante, lo que
conlleva una falta de variación cíclica de voltaje, una menor dosis de radiación al paciente, una
máxima homogeneidad de las longitudes de onda , el menor tiempo de exposición posible y, por tanto
se evita al máximo la borrosidad cinética, sobretodo los movimientos involuntarios de la mama
izquierda producidos por el latido cardíaco. Hoy día todos los mamógrafos deben ser equipos con
convertidores de alta frecuencia.

  • Miliamperaje.
    Necesariamente es muy elevado. La borrosidad cinética de algunas mamografías comienza a
    hacerse manifiesta en la imagen cuando el tiempo de exposición excede de 1 segundo, pero puede
    llegar a ser un problema cuando se alcanzan 2 segundos. Con una compresión insuficiente, puede
    apreciarse con exposiciones incluso de 0’2 segundos La borrosidad cinética es más fácil apreciarla en
    mamas de mayor tamaño, menos compresibles, más fibroglandulares, así como cuando se emplea
    parrilla antidifusora. Las mamografías magnificadas son más susceptibles de presentar borrosidad
    cinética porque se utiliza el foco fino. Todo lo anterior comporta un incremento de miliamperaje por
    segundo (I x t) (mAs), o la necesidad de un mayor tiempo de exposición.
    Fig. 6.3.Características del mA del mamógrafo.
    Pero además de la posibilidad de borrosidad cinética, los tiempos largos de exposición
    pueden disminuir relativamente el ennegrecimiento de la película o pueden hacer preciso el empleo de
    mayores dosis de radiación; ya que en el empleo de unidades hoja de refuerzo/película no se cumple
    la ley de reciprocidad. Es decir, la película expuesta a la luz que emite la hoja de refuerzo no se
    ennegrece proporcionalmente a la cantidad de luz que recibe, sino siempre algo menos. El mismo
    número de fotones liberados en tiempos cortos produce un mayor ennegrecimiento que ese mismo
    número de fotones liberados en tiempos largos. Dicho de otra forma, la película pierde velocidad a
    medida que se aumenta el tiempo de exposición.
    Por lo tanto, el generador ha de tener potencia suficiente para poder disminuir el tiempo de
    exposición al mínimo posible, para así reducir el movimiento y la borrosidad cinética a la que da lugar y
    acortar el tiempo durante el cuál la paciente debe soportar la compresión. En definitiva, debe ser
    capaz de producir un elevado miliamperaje.
    Para una unidad con dos o más tamaño de foco, el máximo mA es menor para el foco fino. El
    mA depende del tiempo de exposición y puede decrecer durante la mísma, así como puede disminuir
    en exposiciones repetidas.
    Dos aparatos con un mA idéntico pueden precisar dos tiempos de exposición diferentes,
    mayor para la unidad que mayor distancia foco/placa posea. Un mamógrafo con mayor distancia
    foco/placa precisa mayor mA para obtener el mismo ennegrecimiento. Sin embargo, no se puede
    obviamente emplear un generador con mayor potencia de la que se puede aplicar en el tubo de rayos
    X.
    Un potencial constante se consigue con los generadores de mediana o alta potencia que
    suelen incorporar en la actualidad todos los mamógrafos, con potencia en corriente contínua a partir
    de 100 mA. En estos momentos también existen aparatos con generadores trifásicos y seis pulsos con
    potencias de hasta 800 mA.
    El tubo de rayos X es, sin duda, el factor limitante más importante en todos los mamógrafos.
    Diseñar y producir tubos de las especificaciones deseadas es un procedimiento altamente complejo.
    Es importante que el tubo de rayos X tenga buenas características de disipación de calor (la corriente
    electrónica se transforma en un 99% en calor y sólo un 1% en rayos X), para permitir una intensidad
    de corriente elevada y por tanto un tiempo corto de exposición. Si el mamógrafo se emplea para la
    detección precoz («screening»), la dispersión térmica debe ser suficiente para radiografiar, al menos,
    DIEZ pacientes por hora. Lo que para una sesión de 3 horas supone al menos 120 exposiciones.
    El aspecto más importante en el diseño de un tubo de mamógrafo es el ánodo. El material
    habitualmente empleado es el Molibdeno por su radiación característica de pico a 27 kV (en el rango
    útil mamográfico), como contrapartida al amplio espectro de emisión del wolframio (empleado en la
    xeromamografía).

  • Fig. 6.4.Espectro de radiación característica en Mamografía.
    El foco requerido depende entre la selección de mamografía normal y la magnificada. Se
    recomienda para la primera 0’3-0’5 mm, pero en el caso de la magnificación el tamaño del foco debe
    oscilar entre 0’1 y 0’15 mm. Para eliminar o reducir al máximo la radiación extrafocal, se ha discutido
    mucho respecto de cuál debe ser el ángulo óptimo del ánodo. Esto puede además ser determinante
    en la calidad de imagen
    Fig. 6.5. Tamaño del foco en Mamografía.
    La carga del tubo es también importante. El foco de 0’1 debe ser capaz de operar a 25 mA
    (1kW), y el 0’3 a 100 mA (5.5 kW) para minimizar el tiempo de exposición. Como material de ventana
    se utiliza el Berilio por su baja absorción en el rango de energía. La orientación del tubo debe
    aprovechar el efecto anódico o talón (heel efect), según el cual, la dosis de radiación o la cantidad de
    radiación va disminuyendo a medida que aumenta la distancia a la pared torácica si el cátodo está
    junto a ésta y el ánodo enfrentado al pezón.
    Desde hace algunos años se están comercializando tubos de rayos X para mamografía con
    ánodo de Rodio/Paladio que mejoran ligeramente la imagen mamografía obtenida disminuyendo la
    irradiación de la paciente explorada.

https://webs.um.es/mab/miwiki/lib/exe/fetch.php?media=mama1.pdf